LindormVectorStore
This notebook covers how to get started with the Lindorm vector store.
Setup
Lindorm is a multimodal database from Alibaba-cloud.It supports full-text search, vector search and hybrid search. To start Lindorm VectorService, you should have an Alibaba-cloud account and purchase Lindorm database service. Note that SearchEngine and VectorEngine are both required if you want to use Lindorm vector search service. You can find more detailed information on this tutorial
You should install opensearch package %pip install opensearch-py
Credentials
Head to you console to sign up to Lindorm and get the public url of Search Engine, username and password.
SEARCH_ENDPOINT = ""
SEARCH_USERNAME = ""
SEARCH_PWD = ""
In this tutorial, we also use Lindorm-ai service to provide the embedding and rerank capability. You can get more information from here
from langchain_community.embeddings.lindorm_embedding import LindormAIEmbeddings
AI_EMB_ENDPOINT = ""
AI_USERNAME = ""
AI_PWD = ""
AI_DEFAULT_EMBEDDING_MODEL = ""
ldai_emb = LindormAIEmbeddings(
endpoint=AI_EMB_ENDPOINT,
username=AI_USERNAME,
password=AI_PWD,
model_name=AI_DEFAULT_EMBEDDING_MODEL,
)
Initialization
from langchain_community.vectorstores.lindorm_vector_search import LindormVectorStore
index_name = "langchain_test_index_1121"
vector_store = LindormVectorStore(
lindorm_search_url=SEARCH_ENDPOINT,
index_name=index_name,
embedding=ldai_emb,
http_auth=(SEARCH_USERNAME, SEARCH_PWD),
)
Manage vector store
Add items to vector store
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"source": "https://example.com"})
document_2 = Document(page_content="bar", metadata={"source": "https://example.com"})
document_3 = Document(page_content="baz", metadata={"source": "https://example.com"})
documents = [document_1, document_2, document_3]
vector_store.add_documents(documents=documents, ids=["1", "2", "3"])
Delete items from vector store
vector_store.delete(ids=["3"])
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Performing a simple similarity search can be done as follows:
results = vector_store.similarity_search(
query="thud",
k=1,
filter=[{"match": {"metadata.source": "https://another-example.com"}}],
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
If you want to execute a similarity search and receive the corresponding scores you can run:
results = vector_store.similarity_search_with_score(
query="thud",
k=1,
filter=[{"match": {"metadata.source": "https://another-example.com"}}],
)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
- Tutorials: working with external knowledge
- How-to: Question and answer with RAG
- Retrieval conceptual docs
More Feature of Lindorm Vector
Routing
When using RAG in UGC scene, routing provides the capability of efficient searching. The following units are the tutorial code to use routing when adding and retrieving document.
import copy
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
# change the file name to your document name
loader = TextLoader("wiki_documents.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=30, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
print("chunk_ids: ", len(docs))
docs = [
copy.deepcopy(doc) for doc in docs for _ in range(10)
] # train ivfpq need data > max(256, nlist), nlist default to 1000
print("total doc:", len(docs))
# You Should Specify Your Routing Value When init the document
for i, doc in enumerate(docs):
doc.metadata["chunk_id"] = i
doc.metadata["date"] = f"{range(2010, 2020)[i % 10]}-01-01"
doc.metadata["rating"] = range(1, 6)[i % 5]
doc.metadata["author"] = ["John Doe", "Jane Doe"][i % 2]
doc.metadata["routing"] = str(i % 5)
Init LindormVectorStore and Build route index from documents
route_index = "search_route_test_idx"
ld_search_store = LindormVectorStore.from_documents(
docs,
lindorm_search_url=SEARCH_ENDPOINT,
index_name=route_index,
embedding=ldai_emb,
http_auth=(SEARCH_USERNAME, SEARCH_PWD),
use_ssl=False,
verify_certs=False,
ssl_assert_hostname=False,
ssl_show_warn=False,
timeout=60,
embed_thread_num=2, # text -> embedding thread num
write_thread_num=5, # embedding ingest thread num
pool_maxsize=10, # search client pool size
analyzer="ik_smart", # search's text analyzer
routing_field="routing", # specify metadata["routing"] as routing_field
space_type="cosinesimil", # others: l2, innerproduct
dimension=1024, # modify when embedding model change
data_type="float",
method_name="ivfpq",
# following args for ivfpq index
nlist=32, # > 1000 by default
)
Routing Search
query = "where is the school library?"
docs_with_score = ld_search_store.similarity_search_with_score(
query=query,
routing="0",
k=5,
hybrid=True,
nprobe="200",
reorder_factor="2",
client_refactor="true",
)
print(docs_with_score[0:1])
Full text search
You can also do the Full text search by specifying the search_type to be "text_search", whose default value is "approximate_search", also known as vector search.
query = "school museum"
docs_with_score = ld_search_store.similarity_search_with_score(
query, k=10, search_type="text_search"
)
print(docs_with_score)
Delete Index
ld_search_store.delete_index()
API reference
For detailed documentation of all Lindorm features and configurations head to the API reference: docs
Related
- Vector store conceptual guide
- Vector store how-to guides